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;' - TECHNICAL NOTE 2853

e A STUDY OF THE APPLICATION OF POWER-SPECTRAL METHODS'

'.

\i OF GENERALIZED HARMONIC ANALYSIS TO

‘,t GUST LOADS ON AIRPLANES

By Harry Press and Berna;d Mazelgky
SUMMARY

; The applicability of some results from the theory of generalized
harmonic analysis (or power-spectral analysis) to the analysis of gust
loads on airplanes in continuous rough air is examined. The general
relations for linear systems between power spectrums of a random input
_ disturbance and an output response are used to relate the gpectrum of
airplane load in rough air to the spectrum of atmospheric gust velocity.
The power spectrum of loads is shown to provide a measure of the load
. intensity in terms of the standard deviation (root mean square} of the
loed distribution for an airplane in flight through continuous rough air.
' For the case of a load output having a normal distribution, which appears
1 - from experimental evidence to apply to homogeneous rough air, the standard
deviation is shown to describe the probability distribution of loads or
,' the proportion of total time that the load has given values., Thus, for
{

o epear

an airplane in flight through homogeneous rough air, the probability
distribution of loads may be determined from a power-spectral analysis.

In order to illustrate the application of power-spectral analysis
to gust-load analysis and to obtain an insight into the relations between
! ) loads and airplane gust-response characterlstics, two selected series of
' calculations are presented. In the first series, the standard deviations
of lcads in continuous rough air described by an assumed power spectrum
are calculated for systematic variations in the frequency ani damping
characteristics of the airplane response to a step-gust input. The
results obtained indicate that the loads in rough air are particularly
sensitive to varlations in the damping characteristics of the oscillatory
. response to a step gust and largely independent of variations in the
- frequency. In the second application, the standard deviation of loads
. 18 calculated for selected variations of each of several airplane geo-
metric and acrodynamic parameters of an idealized and stable transport-
type sirplane, The standard deviations obtained are compared with results
derived by conventlonal techniques of using the calculated peak response
to an ideallzed and representative discrete gust. The results indicate
that for stable configurations both methods of analysis yield results
. that are consistent to a first approximation.
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INTRODUCTIOR

The study of gust loads on airplanes Js a twofold problem requiring
the adequate representation of the characteristics of atmospheric turbu-
lence and the determination of the airplane response (loads or motions)
in rough air. These problems have bLeen recognized since the inception
of gust-load research but because of the difficulties involved only
limited approaches to the problems appeared practical. The methods that
have been used are described and discussed in detail in reference 1, In
general, the approach has been to use simplified airplane-response theory
for the determinaticn cf the characteristics of discrete gusts from air-
plane measurements of load. The "gusts" derived on this basis are then
used to calculate loads on other airplanes. Although these proceédures
appear reasonable for transferring loads to similar airplanes, as indi.
cated in the reference, they sre of queationable value for airplanes of
widely different characteristics (such as, configurations and stability
characteristics). These limitations have, however, not proved serious
in the past since the transport airplanes which were primarily affected
by gust standards appeared, in general, to follow conventional design.
Available data indicate that new transport airplanes experienced gust
loads which were, in general, compatible with those predicted from past
work. -

Trends In seronautics- toward higher speed and the deveiopment of
missiles have served to introduce & widening range of unusual configura-
tions and alrcraft stability cheracteristics. Furthermore, the gust-
load design requirements, which formerly were of concern for transport
and bomber airplanes only, appear to have become Ilmportant for other
aircraft as well. As a consequence of these developments, the need for
more generally applicable techniques, both for the measurements of the
characteristics of atmospheric gusts and for the calculation of the gust
loads on new airplanes, has become more urgent,

Developments in the theory of generalized harmonic analysis
(ref. 2) appear adaptable for extending the analysis of gust loads beyond
the discrete-gust case to the case of continuous turbulence. Techniques
from generalized harmonic analysis involving the concept of power spec-
tral density have been used for many years in diverse fields, such as
in the study of randor-nolse problems in communicatlions and in the study
of small-scale turbuience of wind tunnels. ' The concept of the power of
a random disturbance, which is fundamental to the present study, is
defined by analogy to electrical power to be the time average of the
square of the disturbance. The portion of the power arising from com-
ponents having harmonic frequencies between ® and ® + dw 18 denoted
as the power spectral density. For linear systems, the power-spectral-
denslty functions of & random input disturbance and an output response
are related through the frequency-response characteristics of the system.
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' NACA TN 2853 . . 3
Attractive features of spectral analysis for the study of gust
N loads are the possibilitles that:
(1) Continucus turbulence can be described in analytic form by
a power spectrum rather than by discrete gusts.
. - (2) The load response of airplanes to continuous rough air can be
! : evaluated.

(3) The desirable respomse characteristics of an airplane for
minimizing gust effects in continuous rough air will become amenable to
analysis.

. In view of the attractive features of power-spect.al-density
] ‘ - methods of analysis, an investigation of the applicability and implica-

B | tions of these techniques to gust-load analysis was undertaken and the .
- results obtained are reported herein. In this paper, the concepts and.
relations of generalized harmonic analysis are defined and their method”
of application to the gust-load problem is indicated. The applicability’
of the normal probability distribution for the representation of the B
probability distribution of loads in continuous rougk air is considered.

For the case of a normal distribution of loads, the standard deviation

. (root mean square) of the load history defines the probability distribu-
A tion of loads. It 1s indicated that the standard deviation may be deter-
‘ ! : mined from load power spectrum; thus the resuits of a power-spectral

- analyslis permit the determination of the probability disitribution of

1 . loads. Finally, in order to illustrate the application of power-spectrsl
i analysis to gust-load calculations and to obtain an insight into the
relation between loads in continuous rough air and airplane character-
istics, two applications are presented. In both applications, the power

~“§ ’ ' spectrum of atmospheric turbulence obtained from flight messurements

\”d*)”;Jl ‘ (ref. 2) is used to represent the turbulence input. The first applica-

) - tion is intended to represent the effects on gust loads of variations in
alrplane dypamic longitudinal stability. The second application is
I intended to illustrate the effects on gust loads of variations of some
geometric and aerodynamic parameters of an idealized transport airplane.
The indicated variations in load intensity are compared with those derived
- by conventional techniques of using the peak-load response to an idealized.
discrete gust, -

! _ .
SYMBOIS
- A() - respongse to unit step disturbance

( 8 - slope of tail 1ift curve per radlen

Yoy - k. ~ Tame e
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R "fi : oy slope of wing lift curve per rédian .
' R ! b,k, parameters of equatior_n (31)
f‘ E c airplane wing chord, ft
9.3 ‘][ ct airplane tail chord, ft -
')'_ ! I pitching l;loﬁent of inertia about center of gravity, xalug-f‘t:2
= 4 [ v reduced frequency, aoc/V, radians/chord
i ’ t 1y horizontal distance from center of gra\;'ity of airplane to
. : wing aerodynamic center, ft
’.' ¢ horizontal distance from center of gravity of airplane to
- ! tail aerodynamic center, ft
4 s li R number, of observations
R An acceleration increment, g - .
he 1 P probability A ) -
. "4“ }' P(z) cumulative probability distribution of z, equation (28)
o 8 distance, chords i
R’ E 8 " wing area, sq ft i
"”;F ,: S¢ tail area, sq ft -
/ . l‘: t - time, sec - -
'S | T arbitrary value of t, ‘sec
T( ) - frequency-;response function with respect to argument,
w, 2, or V
: vertical gust velocity, ft/sec -
' ' airplane true airspeed, fi/sec .
W airplane weight, 1b ‘
w() response to unit impulse disturbance ’
: x distance, ft . .
’ arbitrary value of x, ft
‘\..7 —
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b

arbitrary random varisble

T Sver TR
«

s f(y) probability density fumnction of variable ¥, equation (23) ‘
- y() arbitrary function of arguments t, x, and 8 _ i
] ;2_65 average power of y(t), equation (%) I 4 ‘
' z standardized varisble, An/o ; ‘
a3 coeffi.ient of skewness, equation (30b) !
’ ay coefficient of kurtosis, equation (30c) ‘ A ? )
g standard deviation of specified random variable, equation (24b)
/ o mass air density, slugs/cu £t » ' l
) T time displacements, gec : ‘
. ," - R(T) autocorrelation function, equation (9) ’
’ of ) power-spectral-density function of an ar'bitrary disturbance ,
with respect to ® or 9 bl
°.:L( ) power-spectral~density function of a designated input ‘ \
°o( ) power-spectral-density function of a designated output 1 ! {
¥(z) normal distribution with mean of O and standard deviation ‘ ;
t equal to 1, equation (27) o b
® circular frequency, radians/sec . ‘ ‘ ‘
Q ‘ reduced frequency, ofV, radisns/ft o .
v gl de/da downwash factor '
% Subscripts: )
? max maximum lead responss 'to a_diacrete gust ‘
% ’ basic . basic airplane configuration ' -

. A bar over a symbol designates the average value of the quantity,

. In this analysis, the use of seveval independent variables t, x, i

» and s for an arbitrary disturbance y( ) and their assoclated fre- '

quency arguments o, 2, and v has been found necessary. In order to ’
designate that the several functions y( ), ¢( ), and T( ) depend



? over the appropriate sets of functions in accordance with the scheme
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upon their arguments a circumflex -~ and a tilde ~ have been used .

shown in the following table:

Variable
Function
; t, sec x, It 8, chords
Digturbance , : y(t) ¥(x) ¥(s)
1 Frequency argument ’ o 1 0 v
1 Power-spectral-density function o (w) o(n) 3(v)
A{ Frequency-response function T(1x T(10) T(iv)
- | Impulse response w(t) W(x) H(s) -
' Step response . A(t) Alx) A(s) ‘_
I
I . -
. ANALYSTS
s .
F Bagic Concepts and Relations of Power-Spectral Analysis
%
_iL_ The theory of generalized harmonic analysis is an outgrowth and
-3 generalization of harmonic analysis and is largely the work of Norbert
/ _ Wiener (ref. 3). Accounts of the theory snd method of application are

also given in references 2, 4, and 5. In order to orient the reader, a
brief account of the bsckground, the basic concepts, and the relaticns
13 is presented. .

The theory of harmonic analysis indicates that an arbitrary periodic
function can be.represented by a Fourier series in the following manner:

F(t) = A.ai + il(An cos nml + By sin na)t) (1)
n= ..

__.‘.
mantuy,
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where

-2
An“T A F(t) cos nwt at

2 A
= am +
B, T_/; F(t) sin not dt

and T 1is equal to 2x/w and is the period of the function. In order
to apply this technique to nonperiodic phencmena, the 1imit of equa-
tion (1) as T goes to Infinity must be considered. For this case of
a nonperiodic function, the Fourler series takes the form of the Fourler
integral and is given by

F(t) = él,;fm eimdmfm F(1)e ¥ ar (2)

If the second integral on the right is denoted as G(@) then equa-
tion (2) can be written in the reciprocal form

F(t) = é%fwc(m)emdm C(3)

where

¢(w) =fw F(T)er-mdr

The Fourier transform pair thus provideé reciprocal relations between
the time fumction F(t) and its frequency representation G(m). The
quantity  G(o) do gives the contribution of those harmonic components
of F(t) vwhose frequencies lie between @® and ® + dm,

A necessary condition for the application of equation (3) is that
the integrals involved be convergent. This condition acts as a severe
limitation on the applicability of the Fourier integral relations. In
many problems, such as ncise in an electric circuit or turbulence encoun-
tered by an airplene in flight, the disturbance is nonperiodic, persists
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-] for a relatively long period of time, and shows no tendency of dying

J out. In these cases the required integrals do not converge and, as «
a consequence, the frequency representation in terms of equationa (2)
and (3) is not possible directly.

I ( In order to develop a frequency representation which would be
f . applicable to continuing disturbances, the theory of -random processes
; makes use of the concept of a stationary random process., The character-
2 istics of a stationary random process are described in detail in refer-
l ence k4, Essentially, the assumption 1s that the underlying mechanism
h
7

[P R VST NN TS

vwhich gives rise to the disturbance does not change in time and that a
statistical equilibrium exists. Thus, the statistical characteristics
of the distribution are invariant with time and statistical prediction
becomes possible. For the case of a stationary random flmction of

time y(t), the mean square ye(t) is defined ‘by

. _ : ‘ |
3 R - lim luf E{(t]adt _ (¥ : :

The mean square will usually exist and represent a measure of disturb- ) ; .
- }

' ance intensity. Since yz(t) s a quadratic function of y(t), it has
been termed the average powpr " of y{(t) 1in analogy to electrical power
which is proportional to the square of the current. The function y(t)
is considered to be composed of an infinite number of sinusoidal com-
ponents with circular frequencies , between O and = The portion

of ya(t) arising from components having frequencies between o and

® + do 1s denoted herein by ¢(w) dm. The function ¢{w) has beencalled
the power-spectral-density function in the literature. From this defini- I
tion, @(m) has the property that :

Ff
Y Y
et e
o o e s
-

0, v
_Hh: .
'

| POV

]

A\

-]

©¥2(t) = fo o) am (5) | .

‘ The power-spectral-density function of a randem variable y(t) 1is o
: generally defined in the following menner {see for example, ref. k) :

T 2
f y(t)e imtdt
0

where the notation | | indicates the modulus of tke. complex quantity.

(6)

|

i “o(w) = 1im L
! .T—émﬂ
)
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If &(w) 1is defined in this manner, it has the property that its
integral over the limits O to = is equal to the power yL"(t That
this expression for ¢(w) 1is concistent with the preceding discussion
is seen to be plausible from the fact that, for each frequency, ©¢(w)

is proportional to the squure of the amplitude of the component of y(t)
at that frequency. Thus, &(w) do is a measure of the contribution of
that frequency to y2(t). It should be mentioned that the definition
equation {6) differs in minor detail from that used in reference 2 but
agrees substantially with those used in references 4 and 5.

A significant and useful relation for linear systems exists between
the power-spectral-density function &¢j(w) of a random input disturb-
ance and the power-spectral-density function &,(w) of an aseociated
output through the system frequency-response function. T(iw). The
system frequency-response function {or admittance) T(iw) 1is defined
such that T(im)eimt "is the system response to the ginusoidal input elot,

In these terms, the relation between the power-spectral-denaity functlons
is given by

8o(@) = 03(c) |2(10)]| * (7

For a given linear system, the function T(im) may be conveniently
obtained from ¢ .our the unit impulse reaponse or the unit step response,
respectively, by means of the followlng relations:

- N
(1) = j(; w(t)e 1otgy
- (8)
T(1a) = m[A(t)e‘m

where W(t) 1s the resgponse to a unit impulse and A(t) 1is the™ responae
to & wit step. ’

Equation (6) msy be used to evaluate the power-spectrél-denaity
function from observed data. However, in practice, the power-spectral-
density function msy be determined more conveniently and less tediously
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by using a related function, the autocorrelation fumction R(T),
defined by -

R(x) = lim X 0°'° y() y(t + 1) at (9)

T—-&m T

The autocorrelation function bhas the symmetrical property R(T) = R({-t)
and is reciprocally related to the power-spectral-density function by
the Fourier cosine transformation in the following manner:

~

R{T) =j:° &(w) cos wr do

>~ - (20)

- dw) = -i—/:o R(T) cos ot ar

~

Reference 4, for example, shows that this definition of the power-
spectral-density function is consistent with the preceding definition
of equation (6). .

Some Forms of Power-Spectral Relations for Gusi Applications

In this section, the method of application to gust loads on air-
planes of the aforementioned concepts and relations is considered. Some
availeble information is presented on the frequency-response function T(iw)
for the gust-loed condition and on the power-spectral-density functions
for atmospheric turbulence. Finally, for convenlence in -gust-load appli-
cations of power-spectral methods, the functions and relations are pre-
sented in terms of distances rather than time. Use is made of the dis-
tances x in feet aad s In chords and their associated frequency
arguments @ and v. These changes of variables are subsequently shown
to be particularly appropriate in the gust case because in these terms
the power spectrums are independent of airplane forward speed. )

If atmospheric turbulence can be considered a stationary random
process, then the basic requirement for the application of the foregoing
power-spectral concepts and relations is satisfied. Evidence that this
assumption is plausible under some conditions exists and is discussed
subsequently. On the basis of this assumption, the turbulent-vertical-
velocity distribution along a line in space can at an instant in time

¢ i ——— .




s

-
- P AT _ -~ . -

Lo B A P e P R e T S -_4&3& . ‘
i Sten ol s T T e s L e e e T L T et

! NACA TN 2853 11

be considered to represent a stationary random function of space con-

sisting of an infinite number of harmonics of various frequencles or ’
wave lengths., For this condition of spacial wave lengths, a natural

unilt for the associated frequencies would appear to be radlans per unit .
distance or radians per foot. The descriptior of the power-spectral- i
density function of atmospheric turbulence must thus be given basically

in terms of umits such as radians per foot. However, for an airplesne in ) ,
£1light through rough air, consideration of the airplene as penetrating

'i the gusts and experiencing the associated loads in terms of time is fre-

quently convenient. Thus, the power-spectral-density functions of gust o -

'1 velocity and loads experienced by the airplane may be considered expressi-
3 ble in terms of the frequency argument o in radians per second used in

the preceding section. It is, therefore, permissible to express the
relation between the power spectrums of gust velocity and loads or normal s
acceleration in terms of equation (7) as

- 0o (e) = 0y (o) [T(19)]2

. where ¢o(aﬁ is the power-gpectral-density function of airplane normal
acceleration, ®i(®) 1s the power-spectral-density fumction of gust

. _ velocity experienced by the airplane, and T(iw) 1is the eirplane normal- . . !
acceleration response function for a sinusoidal gust velocity input, ‘ \

inputs and acceleration increment An (load factor) outputs. The func-
tion ¢i(w) will have the dimensions of (ft/sec)%/radian/sec;IT(iﬂbl2
will be given in (%/%t/sec)e. Consequently, ®¢,(®) will have the

dimensions of ge/fadian/sec. In this form, the power-spectral-density
functions, heving the dimensions of power radian/sec, refer to a par-
ticular airspeed. Before considering the representetion of these func-
tions in & form Independent of airplane speed, some remsrks on the

e determination of the frequency-response function for the gust-load con-
dition and on available Information concerning the power-spectral-density
function for aimospheric turbulence appear appropriate.

The present study 1s primarily concerned with vertical gust velocity : i

© e et o —————
———

Frequency-response function.- Experimentel methods for determining
the frequency-response function of an airplane for a gust veloc;tj dis-
turbance have unfortunately not yet been developed. The frequency-
respongse function for airplanes for a gust disturbance can, however, be
estimated by theoretical methods by solution of the ailrplane equations

. of motion for a gust disturbance, Methods for the determination of the
frequency-response function for a linear system are described in chapter 2
of reference 4, tor example. The calculation of the frequency-response
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function may sometimes be more conveniently performed by first deter-
mining the airplane response to a step gust by methods such as those
described in reference 6. The response of a step gust may then be
used in equation (8) in order to determine the frequency-response
function for a continuous sinusoidel gust input.

Power spectrum of atmospheric turbulence.- The power-spectral-
density functions of atmospheric gust velocity have been studied from
airplane flight measurements (ref. 2). Measurements of pitching velocity
of a B-25 amirplane in flight through rough air were used to determine
the power-spectral-density function of atmospheric turbulence for four
weather conditions. Clementson determined the reduced autocorrelation
function R(7)/R(0) of pitching velocity and obtained the output power-
spectral-density function by taking its Fourier transform. The appro-
priate frequency-response function as determined from simplified theoreti-
cal calculations was then used in equation (7) to obtain the input spec-
trum. The normalization of the autocorrelation function R(T) by dividing
through by R(0) 1is arbitrary and was made on the basis of ylelding a
pitching-velocity power of 1 (degree/second)2 Tor the airplane uged in
that investigation. The normalized power-spectral-density functions of
atmospheric turbulence derived in this manner did not vary appreciably
between weather conditions; although, as might be expected, the value
of R(0) for the pitching velocity output did vary appreciably, and
reflected variations in the average power of turbulence with weather
condition. On the basis of the results obtained in reference 2, the con-
clusion was reached that "atmospheric turbulence is a stationary random
Process that can be statistically described by a single reduced pover-
spectral-density curve." Although additional tests under a wide variety
of atmospheric conditions and the use of other airplanes are needed to
verify this conclusion, the spectrum obtained appears to be representa-
tive at least of the conditions covered by the tests. .The results

-obtained in reference 2 for the power-spectral-density function of

atmospheric turbulence thus provide a turbulence input and are used in
subsequent applications in the present study.

The average reduced power-gpectral-density function obtained in
reference 2 for an airplane true flight speed of 300 feet per second is
shown In figure 1. The results shown are corrected for two errors made
in reference 2 and pointed out in reference 7. In addition, the results
of reference 2 have been divided by 2n in order to conform to the
definition of the power-spectral-density fumction used herein, equa-
tion (6). The power-spectral-density function shown in figure 1 has

dimensions of (ft/sec)2/radians/sec and applies to an airplane sirspeed
of 300 feet per second.

Changes in the frequency argument.- As pointed out previously, ¢&{w)
has the dimension of a poweﬁ/radian/éec and thus depends upon the airplane
forward speed. In order to ‘express the power-gpectral-density functions
in terms independent of airplane flight speed, the change of variables

L ) ’ ' . )
Ao

[
1

e e e g~

- -
.
.

o —

e va— mene

R

b W AR B b § S——

- m—————




Lo

ik

\%
o p— e rr—— Ao Ty r———

Aund

i

CTal T

- e ey Bt~

ANE 2L

NACA TN 2853 . 13
=R
. =3
(11)
x =Vt
is introduced. The variable O 1s a reduced frequency in radians per
foot. The variable x is the airplane flight distance in feet. In
terms of these variables, the average power of a disturbance F(x) is
given by ) -
P(x) = 1n & fx [$(] ax (12)
e 0 . -
(The use of the circumflex is explained in the section "Symbols.”)
3 If the power-spectral-density function &(Q) 1is given by
.- X P -
. A 3(8) = 1im % f F(x)e L (13)
: X~>» o 0--

then () givea_the average povwer of the disturbance arising from com-
ponents having frequencies between 0 and 2 + dQ. Inasmuch as

f- 8(a) an =f o(a) do = y2 ()
0 o _ :
it follows from equation’ {(11) that

(15)

8(0) = velw) = vo(va)

As pointed out in reference 7, the power-gpectral-density function
for atmospheric turbulence representing 81(9) is incorrectly given in

reference 2, The power-spectral-density fumction 31(9) which corregponds
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to the function shown in figure 1, was obtaincd by equation (15) and is
shown in figure 2., The resulting power spectrum of atmospheric turbu-
lenceé is independent of airplane speed and in a limited sense may repre-
sent a unlversal reduced power-spectral-density function of atmospheric
‘urbulence, :

The relation between the frequency-response fumctions for the
- sinusoidal input eldt gang el 45 now considered. Since for a

glven airspeed the gusts represented by elwt gng el are, from
equations (11), the same gusts, the load responses when expressed in
terms of time t and distance x will only involve a change of scale.

1r B(10)el?® 15 the airplane loed response to the gust eiX_ then
the frequency-response functions are.simply relsted in the following
manners

T(10) = T(io) = T(ivn) - ()

The frequency-response function f(iﬂ) mey be obtained from relations
gimilar to those of equation (8) and given by

f(19) = " () e 1%%ax
( [o (x)e
- > - (17
f(10) = 10 [ A(x)e~1™ax
(12) nfo (x)e ]

A

where W(x)  and 3(x) are the response functions of the unit impulse
and unit step disturbances, respectively, expressed as a function of
flight distance. These response functions are related to W(t) and
A(t), respectively, by the relations .

ey

W(x) = %.w(t)

A(x) = A(t)

In terms of the variable , the input-output relation can, from
equations (15) and (16), be expressed by the relation

Bol) = 8 () |ram)® : (18)
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'The average power for a glven input and output in terms of the fre-
quency ? may from equations (14} and (18) be obtained Ly the relations

P = j: 3.(0) an - fo " 4(2) |8(10) | 2an (19)

Another set of variables is useful in the applications of power-
apectral analysis to gust loads. This set involved the reduced fre-
quency V in radians per chord and the nondimensional distance s in
chords. Because of the need for consideration of unsteady aerodynamics
in gust-loads analysis, calculated responses to step gust velocity inputs
may frequently be given in terms of the nondimensional distance 8 and
the frequency-response function in terms of the reduced frequency v.
These variables Vv and 8 are related to ® and Q and to t and x
in the following manner:

"
o

v axc 0
Vv \

I

Iir T(iv)elV® 15 the acceleration response to the gust ewB then
'I(iV) may also be obtained from the impulse or step response by the
relations

B

T iV) = . W d
( j (8)& 8 | 7 .
r (21)

"1‘ 1V) = iv A(a)e 1“363
( f{)

A

where W(s) and A(s) are the responses to the impulse and step gust
inputs in terms of the variable 5. These response functions are related
to W(t) and A(%), respectively, by the relations

W(s) = % w(t)

A(s) = A(t)

A i i < b —
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The frequency-response function %(iv) 1s related to the func-
tions T(iw) and T(i0) in the following manner:

T(10) = T(1cR) = T(ivR) (22)

and involves only a change of scale of the frequency axis.

These rela-
tions are used in the subsequent applications.

Relation of Power-Spectral-Dengity Function to Applied Gust Loads

In order to apply the foregoing methods of analysis to the study of
gust loads, the power spectral density of loads must be related to the
intensities of the actual loads. The power-spectral-density function,
which provides a measure of the average power arising from components
at varlous frequencies, does not directly reflect the load intensities
since the actual load at a given time represents ‘the combined output at
the various frequencies. Thus, it is desirable to relate the power
spectrum of loads to specific quantities of concern in load studies,
such as the proportion of total time at a given load intensity (proba-
bility distribution of load intensity), the number and intensity of peak
loads, and other such particular quantities that may be of interest for
structural analysis. In the present report, only the relation of the
power-gpectral-density function to the probability distribution of load

is considered and more specifically the significance of the normal dis-
tribution for loads 1s considered.

Probability distribution of output.- When a linear system is
exposed to an input varying in a random manner with time, the probability -
distribution of %the system output y can frequently be represented by a
normal probability density distribution defined by the relation

-3

f(y) S §
gy -

(23)

where ¥ and 0 are the mean and standard deviation and are defined by

T

y at (2ha)
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- T ° 1/2
o=| lim "rl'f (y - F)at (24b)
T—>w 0

Investigations of commmication problems associated with noise, which

has many obvious similarities to turbulence, have shown that normal dis-
tributions are frequently encountered. Rice in reference 8 has, for
example, shown that for a linear system the shot effect in a vacuum

tube gives rise to a noise current which has a normal distribution of cur-
rent intensity. Investigation of fluid turbulence frequently yields
normal distributions of velocity fluctuations. These results appear to

be explained by the central limit theorem of probability (ref. 9) which
states that, under general conditions, the distribution of the sum of a
large number of random variables tends toward a normal distribution.

The theoretical derivation of the probability distribution of loads
for an airplane in flight through rough air is mathematically difficult
and appears to involve assumptions regarding the nature of turbulence
that are, for the present, questionable., However, if the load time history
in continuous rough air is considered to be a stationary random function,
the time history can be considered to be made up of the' sum of a large
number of harmonic components with random phases, If the associated
power-spectral-density function is relatively uniform (having no sharp
peaks), then the load at any given time is the sum of a large number of
random variables of roughly the same order of masgnitude. These condi-
tions meet the principal requirements for applicability of the central
1imit theorem and, consequently, it follows from this theorem that the

probability distribution of load intensity may tend toward a normal
distribution.

Significance of the normality of the distribution of loads.- If the
distribution of airplane accelerastion increment in continuous rough air
is normal with a zero mean value, lhe probability density distribution
of the acceleration increment An 1s completely described by the standard
deviation and from equation (23) is given by

1 2
f(on) = —1o e 2te) T (29)
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- ‘A
] Equation (25) is termed the probability density function of 4n, and J
f%An) d(on) can be considered to represent the proportion of total .
time (or .total flight distance) that An has a value between An !
and An + d(An). l

'

o
PRBRT IR PR (TR LX)

In order to examine the properties of equation (25), it is con- :
venient to corsider the distribution of the varilablc : i

z=22 . (26)

where 2z 1is the so-called standardized variable and has the probability
density distribution

[N

|
3

b Sade | Sk e

' Wz) = L E2 T (e)

The function V¥(z) 1is the normal distribution with a mean of zerc and a }
standard desiation equal to 1 and is the error function commonly tabu- ’ - ,
. lated. The probability that a random value of z will exceed a given B _
f value is given by the integral of equation (27) as follows: -

14 - P(z2) =f°° ¥(2) az (29 -

z

< Equation (28) defines the cumulative probability distribution of the
: reduced variable z and in the case of time-history data may be con- !
sidered to represent the proportion of total time that the value of =2 :
'S exceeds a given value. For a fixed value of probability P, =2 . 1
is fixed and can be obtained from tabulations of the Integral of the

error function. Thus, for ‘example, for P = 0,02275, =z = 2,

Equetion (28) indicates that the probability of exceeding a-given Q
value of z is & function of only the given value. Conversely for a }
given value of probability, the largest velue of 2z exceeded 1is also - -
fixed and depends only upon the probability. Making the substitution j

z = A_é‘- into equation (28) ylelds the result that the probability of -
exceeding a given value of An/c 1s likewise a function only of the
value of /_\n/ ¢ and is given by P(’%—). The. converse also applies that,
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for a given value of probabllity, the largest value of Anfo  exceeded
is fixed and depends upon the probability. Consequently, the largest
value of An exceeded with a given probability depends upon the value
of o and is given by o0z. The largest value of An .exceeded with a
glven probability is thus seen to be directly proportional to the
standard deviation. For example, when the standard deviation is
doubled, the largest value of An exceeded with a given probability
is also doubled. This direct relationship between the value of the
standard deviation and the load probability distribution makes the
standard deviation an lmportant and significant meesure of the load
experience for the case of gust loads having a normal distribution.
Because of this direct relation between the standard deviation and the
load probability distribution, the standard deviation will be useful
as a measure of losd intensity in the present study.

The foregoing discussion has served to establish the plausibility of
gust loads having a mormal distribution under some conditions and the sig-
nificance of the standard deviation of loads for the case of a normal dis-~
tribution. The standard deviation of loads can be derived from a power-
spectral analysis in the following manner: From its definition (eq. (24b)),
the standard deviation of load increment output heving a zero mean value
is the square root of the average power. Thus, the pcwer-spectral-lensity
function of loads and the standard deviation of the probability distri-
bution of loads are related, The standard deviation ¢ may thus be
obtained directly from the power-spectral-density fumctions by the
relation

@ - /o " oy am = fo Bo(0) an (2

This relation between the probability distribution and power-spectral-
density function for the case of a normally distributed output ties the
power spectrum to a basic characteristic of the load history and is

_thus of importance for applications to gust-load analysis.

N e v

e L ——— R |

APPLICATION TO GUST-LOAD PROBLEMS

In view of the simple relations between the loads and the power-
spectral-density functions for the case of normal distributions of
loads, the determination of the normality of load distributions appears
to be an important problem in the application of power-spectral analysis
to gust-load problems; therefore, some experimental gust-load distribu-
tions are examined for normality. Two applications of power-spectral

S
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methods to the calculation of gust loads are also glven In this section
in order to obtain some insight into the relations between airplane
characteristics and loads in continuous rough air. . In the first series
of calculations, the input-output relations are used to calculate the
standard deviation of loads for a selected series of idealized responses
to a step gust. The second series of calculations 1s made to determine
the variations in the standard deviation of load for individual varia-

* tions of certain geometric and aerodynamic parameters of an idealiged

transport airplane. The indicated variations in load intensity in this
application are compared with those derived by conventional techniques
of using the peak load response to an idealized discrete gust.

; Observed Distributions of Loads

In order to determine whether frequency distributions of load are
actuelly normal distributions, recourse was made to some available
experimental gust-load time-history data, Time-history records of the .
normal acceleration for two airplanes of the gsame type (differing only -
slightly in center-of-gravity position) in side-by-side flight through

-continuous rough air at low altitudes above generally fllat terrain were
avallable from a recent investigation. The test conditions and summaries
of the data are presented in reference 10. The normal-acceleration
time-history records for about a 2-minute section of one run at 450 miles
per hour were evaluated in detail by taking readings at intervals of

1/20 second, roughly one reading for each 4 chords of airplane travel,
The frequency distributions for the two airplenes are summarized in
table I. {Additional data of the same type were also examined but do
net appear to warrent reporting in detail at this time.) In determining
these distributions, the 1 g level was assumed to be at the mean value

of the disturbance. (This assumption is frequently used in gust evaluam-
tions in view of the difficulty in exactly determining the 1 g line for
the flight condition.) The other primary characteristics of the observed
frequency distribution, standard deviation o, coefficient of skew-

ness a3, and coefficient of kurtosis ) are also given in table I

where the statistical characteristics of the distribution were determined
by the following relations:

1/2

2 .
U=|E_‘.An1;A_ﬁ)] ’ (30a)
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1 =(an - &)3
a3 = ';-3" —— .(30v)

=\
%zj.%;_é_ﬁ‘i)_ (30¢)

where N 1s the number of observations. For a normal distribu-
tion az = 0 and o = 3. The distributions of table I are shown as

frequency polygons in figures 3(a) and 3(b). Alsc shown in the figures
are the normal distributions fitted in accordance with standard sta-

tistical procedures by megns of the calculated standard deviations of
table I. ) . :

The fit of the normal distribution to the data for airplane A
shows some tendency of the normal distribution to underestimate the con-
centration of values about the mean of the distribution while the fit
of the data of airplane B appears generally good. In order to test the
hypothesis that the observed samples are from a normal distribution,
statistical procedures were applied to the observed statistical param-
eters. The results of thege tests indicated that the distribution of
On for airplane B could be considered from a normal distribution, whereas
‘the distribution for airplane A would not be assumed from a normal dis-
tribution. The magnitude of the departure from normality did not. how-
ever, appear lsrge in this case.

In order to permit exsmination of the behavior of the distributions
at the larger values of load factor which are of concern, the observed
relative cumulative frequency distributions and the fitted cumulative
probability distributions are shown in figure 4. The curves for both
the probability of exceeding given values and the probability of being
less than given values are shown on semilogarithmic paper in order to
permit comparison at both the large positive and negative acceleration
increments. Examination of these figures indicates that the data for
alrplane B are in excellent agreement with the fitted curves. For air-
plane A, the over-all agreement between observed deta and fitted curve
appears reasonable although some dlscrepancy between the observed dis-
tribution and the fitted curve is apparent particularly at the larger
negative values of An. These discrepancies are in general, not large,
however, and might, for example, be due to plloting-technique effects.
However, the lack of consistency in the results indicates the need for
further study of the question of the normality of the distribution of
load.
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In order to examine the question of normality somewhat further at
this time, recourse was made to additional date on frequency distribu-
tions of load increment under conditions similar to those represenced
in figures 3 end 4. Exemination of these additional date indicates
that although the distributions were generally close to normal, in a
number of cases, more large accelerations were experienced than expected
for a normal distribution. Consideration of the time-history records
from which these distributions were obtalned indicated that these
departures from normality were agssociated with lack of homogenelty in
the turbulence Ilntensity during the flight run. Only for short runs of
constant level turbulence did the distributions appear normal.

The manner in which the departures from normality arise in nonhomo-
geneous turbulence may be clarified by an example. Consider a flight
run through rough air consisting of somewhat more severe turbulent con-
ditions during the second part of the run. The over-all distribution
of loads may for this condition be expected to consist of two normal
distributions, one for each part of the run. The two normal distribu-
tions would be expected to have mean values of zero for the load factor
increment but different standard deviations. The combined distributiom
for the whole run can be shown (appendix) to depart from normality with
an excess of observations at the center and at the larger values of load
increment. This mechanism can account for the departures from normality
observed in the data examined. ’

In view of the foregoing indications, it would appear reasonable
for the present to assume that for locally homogeneous turbulence of
the type represented in figures 3 and k the frequency distribution of
load increments may be expected to approximate a normal distribution.
The approximate normality uf the load distribution for homogeneous
turbulence permits the use of the relations derived earlier between the
frequency distribution of loads and the power spectrums and permits the
representation of the load intensity by a single number, the standard
deviation of the frequency distribution of load. This unification of
the power-spectral-density function and the probability distribution of
loads even for limited conditions is of considerable importance since in
many loasd studies the relative loads in continuous rough air of two air-
planes (or one airplane at two flight conditions) are of interest. For
this case the use of the standard deviation as derived from the power-
spectral analysis appears to provide & direct measure of the relative
loads. . .

In view of the foregoing indications that a lack of turbulence homo-
genelty can cause significant departures from a normal distribution of
loaeds, further studies of the distribution of loads under various atmos-
pheric conditions are needed., It may be expected that the turbulence
connected with such dynamic phenomena as thunderstorms which have a
large-scale physical structure and short life cycle may not be stationary
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random. For these conditions, the alrplane load histories might have '
distributions that depart significantly from normality., This limita-

tion may not, however, be too serious since even in these cases the

standard deviation of loads may still provide a measure of load intensity

although one not as simply interpretable in terms of the probabllity
distribution as in the case of the normal distribution. :

Relation of Stép Response Characteristics to Loads
in Continuous Rough Air

Examination of calculated responses to entry of a sharp-edge gust
for airplanes representative of conventional tramsport types has indi-
cated that the shape of the response curve up to the peak accelcration
depends primarily on the gust penetration function (Kissner function).
After the peak value which occurs close to 6 chords of gust penetration, -
the character of the response appears to be primarily a fumction of air- - - l
plane stability and to approximate the short-period oscillation of the coT
airplane, On the baslis of these propertiea, a limited series of-response .
curves to a sharp-edge gust were selected to represent variations in - !
airplane dynamic longitudinal stability. The incremental acceleration ]
responses in g's to a l-foot-per-second sharp-edge gust were assumed to )
be given by the following expressions:

-— tmirman, A

An(a)=3iosinf2-s (051356)
(31) o
tn(s) = g5 e ™8 Ocos ky(s - 6) (65 8Sw)

Equations (31) represent a quarter sine wave up to a fixed peak value
of 0.033g at 6 chords and s damped oscillatory function for the remaining
portion of the response. The parameters b and %k, can be considered

to represent the damping and frequency parameters, respectively, of the
response following the peak load., In figure 5, plots of equations (31)

are shown for nine selected cases covering three values for each of the
two parameters. The values were selected to sample a wide range of -air-
plane response characteristics and represent variations in wave length v

from %0 to 150 chords and variations in damping from light to almost i
critical damping.
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In view of the linearity of the systems being consldered, the
multiplication of the response An(s) of equations (31) by a constant
results in the multiplication of the frequency-response function and
the standard deviation of the output in turn by the same constant. Thus,
the effect on the standard deviation of load of variations in the peak
values of An for given values of X, and b is apparent and the con-
sideration of an amplitude factor in equations (31) does not warrant
more detailed discussion. ’

The frequency response function "i‘(iv) was determined analytically
from the sharp-edge-gust response given by equations (31) by using equa-

tions (21). The amplitude squared of the transfer function l?i‘(iv)le is
given by g . . .

2

(02 + k02 + ve)bv sin 6v + _(b2 - k°2 + Qz)vzcoa év .
(b2 + k2 S v2)2 + lw2b_2_ « )
- 1 ('D2 + koo +Av2)bv cos 6v - (b2 - k°2 + Ve)veaiﬁ 6};

2
(30) ('b2 + k°2 -,\?)2 + by2p?

(32)
— - V ~

12

gFOB .6('{%-V>-l+cos 6(% + v) -.‘
L ﬂ —l"§-+v _‘

Plots of equation (32) are shown in figure 6 for the nine cases con-
sildered in figure 5.
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The reduced power-spectral-density function of atmospheric turbu-
lence, shown in figure 2, was used as the input. For any particular
. weather condition, the power-spectral-density function would have tc be
adjusted by teking into account the actual averagc power of the input.
This change would, however, only involve an appropriate linear change in
the ordinate scale and would not affect the relative indications of the
present comparisons. '

¢ At i e & o W —

Examination of figure 6 indicates that, as the-damping of the
oscillation is decreased (b decreased), the amplitude increases rapidly
in the neighborhood of the oscillation frequency k,. The frequency
response function remains relatively unchanged over the rest of the
frequency range. On the other hand, variations in the oscillation fre-
quency k., for fixed values of b, have a minor effect on the shape
- - . of the function but the peak values chasnge (note changes in the ordinate
I scale) and occur at values of v close to kg.
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The power-spectral-density function of the acceleration-increment
output was obtained from equations (18) and (22) by the relastion

_8(a) = B(a)|T(1em)| 2 (33) ;

For convenience, an airplane chord of 9.67 feet, the same value as the

chord of the airplane used to obtain the input spectrum, was assumed

for this series of calculations. The power-spectral densities of the ‘
acceleration-increment output 30(0) for the conditions being con-

i
sidered are shown in figure 7. Since the power-spectral-density func- {
tion of atmospheric turbulence was not known for frequencies Q1 less l

{

than 0.0016 radiar per foot, the output spectrum could not be determined
in this region. The output spectrums were, however, extrapolated to
zero at 1 = 0 in order to complete the output spectrum at the low fre-
quencies, The extrapolations are indicated in figure 7.

v Exsmination of figure 7 indicates that as damping is decreased the
' - output spectrums for each value of k, increase rapidly in the neighbor-

hood of the oscillatory frequency £ = %8 = 9k27. For given values of
damping, however, the power spectrums do not vary appreciably in shape
but the peak values shift in frequency with k,. Thus, the total power
of the spectrum as measured by the integral of the spectral function

. . appears to be largely independent of Xk, and primarily a function of D
for the conditions investigated. This result can be seen from figures 6
and 7 to be a consequence of both the variations in regponse functions

. . and the rapid decrease of power of the gust spectrum with increasing
; . frequency.
3
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The rapid increase of the loads with decreased damping is more
clearly 1llustrated in figure 8, which shows the standard deviation of
loads o (the square root of the integral of the power spectrum) as &
function of frequency for the several values of b considered. The
standard deviations of the acceleration increment o were obtained -
from the oulput spectrums by using equation (29). In the evaluation
of equation (29), the output spectrums as extrapolated from a fre-
quency of 0.0016 radian per foot to G (fig. 7) was used and the
area of the output gpectrums for values of Q greater than 0,028 was
agsumed negligibdle, The figure indicates clearly that the load level,
as measured by the standard deviation, is largely independent of the
frequency parameter k, but varies appreciably when the damping param-.
eter b 1is changed, the variation of the standard deviation being of
the order of two to one for the conditions considered.

The results imply that the short-period response characteristics
and particularly the damping characteristics have an appreciable effect
on the airplane loads in continuous rough air. In contrast, the air-
plane peak-load response to discrete gusts can be sghown for the present
example to be affected only to a minor extent by the short-period damping
characteristics. In view of these differences between the indications of
power-gspectral and discrete-gust calculations, discrete-gust calculations
may not adequately reflect differences in the gust loads in continuous
rough air between airplanes differing in dynamic stability characteristics.
In particular these results indicate that discrete-gust calculations may
not be adequate for the determination of loads in continuous rough air for
modern high-speed airplanes which in contrast to the airplesnes of the past
have relatively poor short-period damping. More complete accounting of
airplane short-period characteristics in gust-load analysis would appear
to be required in these cases.

The varialions of the response to a step gust assumed in the present
illustration represent idealized conditions in which the characteristics
of the airplane response to a step gust were changed in a simple manner.
In practice, the change of almost any ailrplane parameter will modify the
response to a step gust in e complex manner, Thus, a change of an air-
plane parameter will affect the peak-load value, the location of peak,
and both the frequency and damping of the subsequent oscillation. Con-
sequently, the problem of optimum design for gust-load reduction is -
extremely complicated and beyond the scope of the present study. The
effects of variations in alirplane geometry on gust loads are, to some
extent, indicated in the second illustration in which the complete
changes in the response to a step gust for limited variations in each
of selected parameters of an idealized airplane are considered. )
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- Effect on loads of Some Variatioms in Alrplane

-
-, Y
N . s—t—
.
—

- ‘ Geometric and Aerodynamic Parameters ;
Rk ’ |
In order to obtain an indication of the relation between some air- i
i plane geometric and aerodynamic parameters and loads in continuous rough j
' air, the power-spectral-density functions of load based on the turbulence i
spectrum of figure 2 were calculated for selected variations in airplane i
characteristics. An idealized transport airplane was used as & basic 1
configuration. Characteristice of this basic configuration are listed
in teble II. In addition, values of each of 1l airplane parameters
listed were varied separately in order tc obtain an "increased' condi-
e ! tion and a "decreased® condition, as indicated in the table, (In the
cage of the center-of-gravity position, the increased condition repre-
sents the forward center-of-gravity position.) The 23 conditions covered s
in these calculations represented stable airplanes with gtatic margins
varying from ~0.25C to -0.50C where & is mean aerodynamic chord.

i
!
C
RN S I

!
KR
S

The responses to a unit step gust with a velocity of 1 foot per ]
second A(x) for the two-degrees-of-freedom case, vertical motion and 1
. pitch, were available for the 23 cases of table II from an umpublished |
study based on the methods of reference 6. The frequency-response func- ’
tions were determined by means of equations (17). The power-spectral- '
. density function for acceleration output corresponding to the turbulence ‘
input of figure 2 was obtained for each condition by use of equation (18),
The standard deviation of acceleration increment was determined for each i
cuse from equation (29) by the relation
|
!

- 1/2
g = {2; oo(n)Adg

In performing this integration, it was assumed that the output for fre- v
quencies of Q greater than 0.028 was negligible. The output spectrums

were algo faired to a value of zero at  equal to zero as in the

previous application.

As.a basis for comparing the results of the indications of the
spectral analysis with the indications of conventional types of analysis
based on responses to single representative gusts, a triangular gust .
with a gradient distance {distance from zero to peak value) of 10 chords
was selected as a representative gust condition. This gust condition
represents an average gradient distance for the more severe gust loads
and is frequently used for analysis purposes as a measure of the airplane
. loads in rough air. The peak load~factor value Anpgyx for a l-foot- )

per-second triangular gust having a gradient distance of 10 chords was .
calculated for the two-degrees-of-freedom case for each of the 23 condi-
. tions considered.
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. The results of the power-spectral and single-gust calculations are
compared in figure 9 for each of the 23 conditions. The abscissa in the
figure represents the single-gust peak response, the ordinate the power-
spectral-density measure of load intensity. For ease in comparing the
relative changes, both single-gust and spectral-calculation results are
shown in terms of the basic airplane response, Thus, the abscissa is
given as Anmax/(Anmax)baBic and the ordinate, as Oldbasic. The line

Anpay - a
canmaX)basic Obasic

methods of analysis gave the same percentage change in load for a given

change from the basic airplane, the plotted point would fall on the line
of equality.

of equality

19 shown as a rgference. If both

Examination of the results shown in figure 9 indicates that to a
first approximation both the standard deviation of loads and the maxi-
mum load for a 10-chord-gradient triangular gust show the same trends
for variations of the airplane parameters considered. The largest
changes in load level are associated with changes in airplane weight,
wing area, air density, and slope of the wing 1lift curve as might be
expected from the sharp-edge-gust relation. Inspection of the figure
indicates that complex second-order differences that may be important
exist in the indications given by the two measures of loads. As an
example, for the variations of loads for changes of wing area the figure
indicates that for the 20-percent incregse in wing area (represented by
the square), the value of Anmax/(anmaxsbasic increases about 18 per-

cent, The relative standard deviation U/Gbaaic: however, increases

only about T percent. This difference appears to be a consequence of

the greater sensitivity of the power-spectral analysis to the chenges

in airplane stability introduced by the increased wing area; the increase
in wing area results in a small decrease in the frequency of the response
to a step gust but a more pronounced incresse in the damping, The present
results also suggest similar differences between the two analyses for
changes in airplane weight and slope of the wing 1ift curve,

The variations considered for the remaining parameters such as tail
length, tail erea, and tail slope of the 1ift curve, in general, yield
minor variations in loads. The variations in Anmax/oanmax)basic. for

these cases are however less than *2 percent while the variations for the
standard deviations are generally somewhat larger, #i percent. In fig-

ure 9 the l2-percent-chord rearward movement of the center-of-gravity )

position 1y, yields about a 3-percent increase in Anmaxl(Anmax)basic

but a 9 percent increase in the relative standard deviation. In this
case, the larger increase in the standard deviation appears largely
assoclated with the movement of the peak of the frequency response func-

tion to lower frequency and thus larger gust spectral power.
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For the stable airplane configurations considered, the power-

spectral anaelysis and the single~gust peak-lcad response yleld trends

- for changes in pesrameter values that are generally conaistent. Differ-
ences that mey be important are, however, discernible and appear associ-
ated with the greater dependence of the standard deviation of loads on
the dynamic stabllity characteristics of the airplane. It would be
expected from the first application that for larger variations in the
damping characteristics of the short-period oscillation, the differences
between the two types of analysis would be appreciably larger than
obtained in the present illustration.

- SUMMARY OF RESUILIS

The anelysis of the application of power-spectral methods of
analysis to gust-load problems has indlcated the following results:

1. The application of power-spectral methods of analysis to load -
calculations provides a measure of load intensity for continuous rough
air in terms of the standard deviation (root mean square) of the load
output. ’ -

- 2. The probability distribution of load intensity In homogeneous
rough air appears to epproximate a normsl distribution. ’

3. For the case of the normally distributed output, the standard
deviation of load completely describes the probability distribution of
loads specifying the proportion of total time that various load values
are exceeded. :

4, The application of power-spectral relations to a selected series
of systematic variations 'in the frequency and damping characteristics
of the airplane load response to a step-gust input indicates that the
damping characteristics of the indiclal response are the primary charac-
teristics in determining the loads In continuous rouvgh air. This result
appears of significance In regard to high-speed alrplanes and misslles
where the short-period longitudinal damping may be -poor.

5. Calculations for a limited series of conventional and stable
airplane configuratione indicates that the loads in continuous rough
air for variations in individual airplane gecmetric and aerodynamic
parameters are to a first approximation adequately reflected by the
peak-load response to the arbitrary 10-chord triangular gust commonly
voed. However, differences are discernible between the Indications of

"the continuous-gust and discrete-gust calculations and appear largely
assoclated with differences in the effects of stabllity changes on the
loads for the two gust conditioms.
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SUGGESTIONS FOR FUTURE RESEARCH

The foregoing results appear to indicate that power-spectral
methods are well-suited to the calculation of lcoads in continuous rough
air. A number of problems exist tnd require further 1nvestigation.
These include

i A T &g S e o

4 (1) The determination of the power-spectral-density functions of
'”j atmospheric turbulence for a wide range of atmospheric conditilons.

(2) The determination of the conditions under which normal distri- . :
butions of the load time history apply.

(3) The investigation of the effecta of the nonuniformity of gusts
across the airplane span on the applicatioa of these techniques.

1

(4) The experimental verification of theoretical determinations of "
airplane indicial responses over the range required to determine usable . v
frequency-response functions. !

: ~ (5) The investigation of the relations between-the power epectruma
4 and the frequency distribution of load-increment peaks and other quanti-
- j ties of interest in structural design. . -

At see o —

{
1l
.t
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Langley Aeronautical Laboratory,
- National Advisory Committee for Aeronautics,
Langley Field, Va.,, September 29, 1952. .
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" APPENDIX

DISTRIBUTION OF GUST LOADS IN NONHOMOGENEOUS ROUGH AIR

31

If the two normal frequency distributions of load increment with
zero mean are defined by

where i
fl(An))fQ(An)

Ny ,No

01,02

the combined distribution is defined by

Ny
Nif)(an) =

0'1421‘[

N
N.T,(on) = —2

regpective probability dens%ty functions

respective number of observations for each

distribution

i

standara deviations of respeétive distributions

Nf(an) = Nyfy(an) + Npfp(an)

where N = Nj + No. This distribution is examined for normality.

(Al)-

(a2)

Since the two frequency distributions Nif;(An) and Nofo(An) are

each normal with mean zero, the combined distribution Hf(An)

is also

symmetrical-about zero. Consequently, for the moments of the frequency
- «distribution pp defined by .

.
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where m 1is a positive number and designates the moment ordef, the

no = f " (an)¢(an) a(an)

-0

following relations apply

u =0 (m odd)

(m even)

g # 0

NACA TR 2853

(A3)

e dee. e deel s s AR - edese
.

(ak)

For a normal distribution, the coefficlent of kurtosis o, "defined

by

has a fixed value

In order to examine the normality of the distribution defined by - !
equation (A2), consider only the value of a),, the coefficient of ’

kurtosis, for that

By definition, the coefficient of kurtosis o for the distribu-

Q =3

frequency distribution.

tion of equation (A2) is given by

¥ -
f (an) iy, aan) + f (an) "N 425(an) a(an)

(a5) o

(16)

(A7)

i/w (An)"‘EIfl(An) + N2f2(An)] a(an)

-0

Ny +N2

o tarnen
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~ ey

which when simplified yields . " 4

3 4 AN i
Nl " N2 (Nldl + N202 " l
Q = (AB) H ‘
- N,0.2 + 0,2 2 : {
1°1 * Pa% 3 {
; i -
E Nl + N2 !
From equation (A6), a necessary condition for the distribu- :
/ﬁ tion Nf(An) to be normal is that a, be-equal to 3. From equa- _ :
3 tion (A8) this condition is obviously true only when : .
3 L 4 3 2 ! :
3 _ 2 2 !
¥ - Nyoy” + Tp0p" = e <N1°1 * Na"z) (9) ' l
3 . 1+ N . :
b [
-
j . Expanding the term on the right and simplifying yields , Lo .
T i !
N
: .
— i :,; 0'11} + 02," = 20120'22 (AlO) ‘ ’
L fl
4 : l S
2 Equation (A10) is thus a necessary condition for the distribution ) !
;/,A defined by (A2) to be normal., However, from the inequality '
) i
22 + v° > 2ab (a £ 1) (A11) § :
. % y
, the only condition for which equation (A10) holds is.when 0] = Oo. ; :
: Thus the distribution f(An) has a normal distribution only for the i

triviel case oy = 0p. If 0) # o2, it also follows from equation (A10)

that the coefficient of kurtosis a) for Nf(An) given by equation (A8)
is greater than 3. The combined distribution consequently has an excess
of kurtosis. Before considering the significance of the excess kurtosis,
it 1s well to note that the present derivation was restricted to the
combination of two distributions for simplicity. It is simple. although

. tedious to verify that simllar results are obtained for the combination
of three or more distributions. :
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The significance of the excewss kurtosis for thc combincd distribu-
The sketch shows two

tion may verhaps be best indicated with a sketch.
symmetrical relative frequency dis-
tributions having the same standard
deviations, one a normal distribu-
tion (au = 3) the other a nonnormal
distribution with ay > 3. The non-
normal distribution 1s derived from
the normal by a shift of mass out-
ward from the central portion of the
distribution and also a shift of
mass Inward to mmintaln the same
standard deviation for the two cases.
Thus, it is apparent that the pre-

M--ay >3

dominent feature of the dlstribu-
tion having excess kurtosis is a
greater concentration of mass at the
center and at the outboard regions
of the distribution than for the -
normal-distribution case.
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TABLE I.- FREQUENCY DISTRIBUTIONS OF ACCELERATION INCREMENT

Airplane A Airplane B
Acceleration increment, Acceleration increment, }.
fn, g wnits Nuzber An, g units Number
-0.777 to D.727 2 -0,.719 to -0.669 1
-.T27 to  -~.677 o] -.669 to -.619 1
-.677 to -.627 1 -.619 to -.589 2
-,627 to -.5T7 o -.569 to -.519 4
-.577 to  -.%27 2 -.519 to -.469 - 11
=527 to  -.hT7 2 -.169 to -.419 12
=BT to =27 7 -.1419 to -.369 22
=427 to -.377 11 -.369 to ~.319 35
-.377 to -.327 16 -.319 to -.269 €0
-.327 to -.277 33 -.269 to -.219 99
=277 to -.227 67 -.219 to -.169 119 :
-.227 to  -.177 104 -.169 to -.119 200 i
=177 to  -.127 157 -.119 to -.069 245 ,
-,127 to -.077 241 -.069 to -.019 25k ‘
=077 to -.027 315 -.019 to .031 266
-.027 to  .023 386 .031 to - .081 277
023 to .03 338 081 to  .131 215
073 to  .123 240 .131 to  _.181 172 ,
JA23 to 173 140 181 to  .231 126 '
AT to .223 125 .231 to .281 T7
.223 to  .2T73 65 .281 to  .331 56
273 to  .323 L3 .331 to  .381 36
323 to .37 16 .381 to  .431 22
373 to  .h23 10 31 to k81 16
A23 to 4T3 9 481 to . .531 9
LT3 to 523 T . 53l to 581 2
523 to  .5T3 1 581 to  .631 2
573 to  .623 1 .
Total 2339 Total 2341
ey 0 An 0
g 0.1%05 c 10.1803
a3 -0.049 a3 -0.013
aj, 4,243 ad; 3.360
W
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TABLE II.- VALUES OF ATIRPIANE PARAMETERS

EJ = 1 ft/sec; V = 308 ft/sec; cy = 7.58 fﬂ

.
. ——

tCenter of gravity rearward,

Airplane parameter Basic Increased Decreased
(a) (a)

8y, pPer radian « . . . 5.56 6.10 L. 73

at, per radian . . . . 3.21 3.69 2.73

S, 80t « o o ¢ « o & . 738 - 885 590

St’ qut * o o s e o 275 330 220

p, slugsfcu ft . . . . | 0.002049 | 0.002378 0.001756

e/ « ¢ 4 0 s e . . 0.5 0.6 0.4

. lw’ ft * & & 5 o & o 0 "1.26 b1026

g, £t o o v v 0 o 35.38 39.26 31.54

I, slug-ft2 .. .. . | 209,600 272,000 146,100

L i 10 11.5 8.5

R - Hydb o o o v o 2 o « 38,000 k7,500 . 28,500
. 8Values indicate parameter changed for giver condition

whereas other paramcters remain same as basic condition.
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Angular freguency, w, roo’uﬂs/ sec

Figure 1.- Normalized power-spectral-density function for atmospheric
vertical gust velocity ©&;(w) for airspeed of 300 feet per second.
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(a) Airplane A.

Figure 3.~ Comparison of observed frequency distribution and fitted normal
frequency distribution.

~

i

NUC 2R

e T A I 1 L T T L i PO e R

A
1
5

A s

P @e—
-y

-
—————

t




L1

m
[T
Q
[4V)
z o g
i [}
f/.“mr
] .
i ; :Mu
1T Thkee -- _

an,g units

: 4
X
- ‘\
“Q&
et - Y
Lo
— == -
Q,\\‘\\A\
o o
,dfr
=
Fﬂrll.:laf .

-
’

Observed dota

A‘.@ £

— Fitted norma/
distribution

-

3

280

40

8 8 ) N
SUOILDALIES QO JO VOGUWIN

(b) Airplene B.

Figure 3.- Conrluded.



~
~

HPUTRVIN |

ISPy

ML

-

4o ' NACA TN 2853

N

rrion of cbservalions
N
m N .
~a
\ . B
)/

o]
~—_

Q [ o
a i
10]
B -
00l — \ o
| o}
—O—Argoorfron exceeding
—O—Frgorkon kess fhan
000! . 1 ¢+ 1 | ) QA

= -6. - , =2 0 2 # ) 6
’ “An, g units
{a) Airplane A;

Figure k.- Comparison of observed relative cumulative frequency distribution
with fitted normal probability distribution.

A e A Rt S

P R e

e e e

v
P o gas

'
Apian -
b
3 .

* e




ik

A

PR STy I |

14

it g
. 2

Ll

Ne
]l

Y 4FJL

Y3 NIy

b

NACA TN 2853

43

‘§ J

§

s

S o 2
X

3 °/
&

4O—P/cp0ﬁf/on exceeds g
—O—Argrorfiy: eSS 1harn

L. 1 1 1

2 o 2
an, g umts

(b) Airplane B.

Figure k4.~ Concluded.

L e S T FUR S LR st
.

- —

———



L Lk

]

PP, v

[RAS

o e——.

-

- NACA TN 2853

Luf
= b
23— A —
\] N T T T T T T T e g’;
. . [ &
SN
New J b!(* - T =
o =L 1 . o -
Nt T ///
~or - - S 1“_,/—" =
w2
(a) ko = 0.04. -
ly N ’._L S e T ~ r _
Lk LT LTI
BIRRNEEE | a
o EH N\ i - ~1~~—~~ -
3 ‘ b T 1) 1
.OIL \ X ‘[ : /_/ i N
N > v § i - - -~ _Jd- Ny
-— o 1 — 3
= i P I - -
-y NS +-4-
-cp ?\*\ - ] !
I~ 1 i
08 ! 1 ' l J =
(b) Xk, = 0.07.
s

NEiE

"(¢) ko = 0.10.

4 l t ! \N.ACA 4/’, -
| ] . i | iR

[ oy 60 70 7(‘ 0 LS R7 o] /20

NS LLRIRI LD LA, 5, Clvers

Figure 5.- Load-factor-increment responses due to penetrationgbf e sharp-

edge gust for several stability conditions.
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